

Website: http://www.jmrr.org

Vol.3, Iss.2 Pages:1-7

USE OF MEDICINAL PLANTS AS A PANACEA TO POULTRY PRODUCTION AND FOOD SECURITY: A REVIEW

Alagbe, J.O

Department of Animal Nutrition and Biochemistry, Sumitra Research Institute, Gujarat, India

Article Received: February 2022 Published: August 2022

Abstract

Medicinal plants remain the most untapped reservoir of potential therapeutic agents that can be exploited in reducing animal exposure to diseases. Some plants possess significant immune stimulatory, hepatoprotective, anti- inflammatory, antifungal, hypolipidemic and antioxidant activities due to the presence of phytochemicals. Phytochemicals or secondary metabolites are generally regarded as safe, effective, environmental friendly and relatively cheap. Examples of phytochemicals includes; tannins, flavonoids, phenols, alkaloids, saponins and terpenoids. Concentrations of phytochemicals in plants vary from plant to plants, method of extraction, geographical locations, species and age of plants. Medicinal plants are capable of stimulating feed intake, enhancing growth performance, improving gastrointestinal morphology, immune modulator, nutrient utilization as well as modulating the fatty acid of meat. They are also recommended as one of the potential alternatives to antibiotics and to bridge the gap between food safety and livestock production.

Keywords: Antibiotics, antioxidants, medicinal plants, phytochemicals, livestock, food safety

INTRODUCTION

Medicinal plants are reservoirs of bioactive compounds used by humans since early ages in traditional medicine for the treatment and prevention of diseases due to their therapeutic potential (Arun and Varsha, 2014; Dilfuza et al., 2015). According to Oluwafemi et al. (2020); Adewale et al. (2020), there are over 500,000 species of medicinal plants identified globally which has led to the discovery of novel drugs or new pharmaceuticals used for the treatment of various diseases in animals. Recently, the use of medicinal plants is increasingly gaining interest due to the increasing cases of antimicrobial resistance due to the indiscriminate use of antibiotics which has led to increased risk of resistant pathogenic bacteria, environmental pollution and toxic residue in animal products which have negative effect on human health and animals (Shittu et al., 2021). The presence of phytochemicals in medicinal plants is generally regarded as safe, effective and natural potential alternatives to produce healthy animals (Alagbe, 2021; Singh et al., 2021). Phytochemicals in medicinal plant possess enormous scaffolds that are mimicked in the design of most molecular stuctured synthetic drugs (Mishra and Tiwari, 2011) or even modified further to enhance a drug's biological activity profile (Itokawa et al., 2008). Thus, there has been a renewed interest in investigating natural products as leads for new biologically friendly, therapeutic drug candidates (Mishra and Tiwari, 2011).

The European Union in 2009 placed a ban on the use of antibiotic growth promoters in animals due to the problems outlined above to promote food safety. According to European surveillance report in 2021 on antimicrobial consumption, European countries have substantially reduced the use of antimicrobials for animals. According to Eckel (2020), healthy animals are the foundation for healthy people and healthy people are the basis for a stable and productive society. Plant based natural constituents can be derived from leaves, stems, flowers, roots, twigs and seeds (Agubosi et al., 2022). They have become a source of drugs and are traditionally used for the treatment of numerous diseases in animals such as gastro-intestinal infection, fever, cough, pneumonia, inflammations, skin infections, mental retardation, arthritis, urinary infections and asthma (Šarić-Kundalić, 2010; Voon et al., 2012; Philander, 2011).

Medicinal plants can be incorporated into animal feed or water to enhance productivity due to the presence of phytochemicals (tannins, flavonoids, terpenoids, alkaloids, saponins, phenols or bioactive compounds (Agubosi et al., 2022) whose concentration vary according to the method of processing or extraction, geographical origin, environmental factors, harvesting seasons and storage conditions (Gadde et al., 2017). The presence of phytochemicals enables plants to perform multiple biological activities such as: antimicrobial, antifungal, antiviral, antibacterial, antioxidant, hepato-protective, chemopreventive, neuroprotective, immune-modulatory, antispasmodic, anagelsics and hypolipidemic (Alagbe, 2021). According to Dhan et al. (2012), phytochemicals are non-nutritive plant chemicals that have either defensive or disease protective properties. For instance, flavonoids are capable of scavenging free radicals and also posse's anti-inflammatory properties (Okwu et al., 2004; Omolere and Alagbe, 2020). Generally, the ability of flavonoids to effectively act as antioxidants depends on a number of factors, i.e., metal-chelating potential that strongly depends on hydroxyls and carbonyl groups arrangement around the molecule, the hydrogen or electron-donating substituent's present and

able to reduce free radicals, and the flavonoid's ability to delocalize unpaired electron which lead to stable phenoxyl radical formation (Seelinger et al., 2008; Gülçin, 2012; Alagbe and Motunrade, 2019).

According to Asl and Hosseinzeh (2008); Atamgba et al. (2015), saponins are useful adjuvants during the production of vaccines and they also have potentials as fertility agents. Tannins are a very complex group of plant secondary metabolites, which are soluble in polar solution and are distinguished from other polyphenolic compounds by their ability to precipitate proteins (Silanikove et al., 2001; Alagbe et al., 2021). They can be grouped into either condensed or hydrolyzable tannins. Condensed tannins are more widely distributed in higher plant species than the hydrolysable ones and they are capable of precipitating proteins (Dykes et al., 2005). Tannins are also known to posses' antibacterial and antiviral activities and type of tannins synthesized by plants vary considerably depending on plant species, stage of development and environmental condition (Cornell, 2005; Enzo, 2007; Alagbe, 2019). Steroids are considered as great potentials for growth and bone marrow stimulation in the body of animals (Tsado et al., 2015; Alagbe, 2019).

Phenolic acids are derivatives of benzoic or cinnamic acids derivatives to form hydroxybenzoic and hydroxycinnamic acids, respectively (Dykes and Rooney, 2006). They are antioxidants which are capable of reducing oxidative stress in animals (Shittu et al., 2021; Alagbe et al., 2019). Oxidation is the transfer of electrons from one atom to the other essential for cell metabolism with O2 as an electron acceptor releasing energy in the form of ATP. It however, becomes problematic when electron flow becomes uncoupled causing the transfer of unpaired single electrons instead of paired ones, generating free radicals (Peréz and Aguilar, 2013; Musa et al., 2020). The generated reactive free radicals containing O2 are known as reactive oxygen species (ROS), oxidants or pro-oxidants as reported by Gülçin (2012). They include hydroxyl (HO), superoxide (O -) peroxyl (ROO), alkoxyl (RO) and nitric oxide (NO) (Nikolova, 2012; Shittu and Alagbe, 2020). Phenols are antioxidants capable of preventing degenerative diseases such as cancer, coronary atherosclerosis and Alzheimer's disease (Nikolova, 2012; Uddin et al., 2014) and protecting cellular components against oxidative damage (Halliwell and Evans, 2001; Dudonnè et al., 2009). Dietary antioxidants have been defined as any substance that when present in low concentrations than that of the oxidizable substrate, significantly delays or inhibits the oxidation of that substrate (Halliwell, 2007). Phytates are capable of interfering with minerals making them biologically unavailable for absorption (Alagbe et al., 2020). High oxalate diet can increase the risk of renal calcium absorption and has been implicated as a source of kidney stones (Chai and Liebman, 2004; Alagbe, 2019). Alkaloids in plants possess medicinal benefits which includes anti-malarial, antibacterial and anticancer activities (Sexena et al., 2013; Olufunmiso et al., 2017). Terpenoids have also been reported to posse's antimicrobial, anti-carcinogenic and anti-diructic properties (Oluwafemi et al., 2022; Alagbe et al., 2020).

In view of the abundant potential in medicinal plants, this review is a collection of different herbs, its inclusion level as well as its effect in poultry production.

Alagbe J O et al.,

Vol.3(Iss.2) 2022

Plants	Dosage	Effect on birds	References
Ginger (Zingiber officinale)	0.2 % - 0.4 %	Improved intestinal	Oluwafemi et al. (2021); Hanan (2015), Burt
		morphology and efficient	(2004); Brenes and Roura (2010)
		growth performance	
Garlic (Allium sativum) oil	200 mg/kg diet	Improved body weight	Jamroz et al. (2015); Mitsch et al. (2004)
		gain	
Ginger + garlic oil	0.2-0.4 %	Improved blood count	Oluwafemi et al. (2021); Hanan (2015),
		and efficient growth	Nouzarian et al. (2011).
		performance	
Moringa oliefera oil	0.1 - 0.3 %	1	Agubosi <i>et al.</i> (2022): Lee et al. (2004)
Supflower (Halianthus annus)	0.2 % 0.4 %	Improves intestinal	Ambosi et al. (2022): Platel and Srinivasan
sumower (<i>Trenannus annus</i>)	0.2 /0 - 0.4 /0	mombology and affigiant	Aguousi et al. (2022) , riater and Simivasan
		norphology and efficient	(2000); Rajput et al. (2012).
		growth performance	
Albizia lebbeck stem bark	20 - 40 ml/lit of	Increased weight gain	Alali et al. (2013); Hong et al. (2014)
extract	water	and dressing percentage	
Balanites aegyptiaca and	$10-40\ mL/$ lit of	Improves intestinal	Khattak et al. (2014); Burt (2004)
Alchornea cordifolia stem	water	morphology and efficient	
bark mixture		growth performance	
Cymbopogon Citratus oil	100 mg - 300	Increased weight gain	-
	mg/kg feed	and dressing percentage	
Garlic (Allium sativum) oil	150 mg - 300	Modulation of fatty acid	Mitsch et al. (2004); Jamroz et al. (2005);
	mg/kg feed	components of breast and	Kirkpinar et al. (2011).
		thigh muscles	
Moringa oliefera leaf extract	60-90 mL/ litre	Increased weight gain	Alabi et al. (2016), Hassan et al. (2004),
	of water	and dressing percentage	
Savory oil	100 – 150 mg/kg	Improves intestinal	Mousapour et al. (2020), Dehghani et al. (2018);
	feed	morphology and efficient	Kirkpinar et al. (2011), Ghalamkari et al.
		growth performance	(2011), Goodarzi et al. (2014) Movahhedkhah
		g	et al. (2019)
			or an (2017).
	0.2 – 0.5 mL/kg	Better feed conversion	Botsoglou et al. (2002), Giannenas et al. (2016),
Oregano oil	feed	ratio and fatty acid	Avila et al. (2012), Castillo et al. (2007), Florou
		modulation in broilers	et al. (2006), Giannenas et al. (2005), Alp et al.
		meat	(2012); Cabrera et al. (2008)

Alagbe J O et al.,

Vol.3(Iss.2) 2022

Lavandula angustifolia oil	0.2-0.4 mL/litre	Suppress the activities of	Adaszynska et al. (2018), Yarmohammadi et al.
	of water	pathogenic bacteria,	(2018), Torki et al. (2021), Mokhtari et al.
		maintain good egg	(2018), Wells et al. (2018).
		quality	
Cinnamon essential oil	0.1 – 0.3 mg/kg	Improves growth	El-Atki et al. (2019), Aami et al. (2010), Abo et
	feed	performance, maintain	al. (2020)
		and prevents dysbiosis	
Clove bud extract	10-30 mL/litre	Improved body weight	Ismail et al. (2017). Jamroz et al. (2003): Brenes
	water	gain and feed intake	and Roura (2010)
Nigella sating oil	0.10/ 0.2.0/	Improved growth	Purity at al. (2000) Purity (2004) Calo at al.
	0.1% - 0.3%	nipioved giowin	Builts et al. (2000), Builts (2004), Calo et al.
		performance and carcass	(2013).
		traits.	
Ixora coccinea root extract	1-2mL/lit. of	Increased average daily	Annapurna et al. (2003), Al-Harthi (2002); Burt
	water	weight gain and feed	(2000)
		intake and decreased feed	
		conversion ratio in broiler	
		chickens.	
Achyranthes japonica root	0.025 % - 0.050	Improved growth	Dang et al. (2021); Ravangard et al. (2017)
extract	%	performance and carcass	
		traits.	
Achyranthes aspera extract	1-5 mL/ lit of	Improved body weight	Long et al. (2020); Park and Kim (2020)
	water	gain, increased red blood	
		cells.	
Turmeric powder	0.2-0.4 %	Scavenge free radicals	Al-Noor et al. (2011); Al-Nazawi et al. (2012);
		and improved body	Amin and Abdou (2012); Arshami et al. (2013).
		weight gain	
<i>Luffa aegyptiaca</i> leaf extract	10 – 30 mL/ lit of	Improved weight gain	Alagbe (2019)
	water	and nutrient digestibility	
Turmeric powder	2g - 5g	Increased	Toghyani et al. (2010: 2011). South et al. (1997)
	-0 -0	immunoglobulins and	
		antibody titres against	
		Newcastle disease	
Circument	100 200 //	Deduce 11	
Ginger root powder	100 - 200 g / ton	Reduce oxidative stress	riadidi et al. (2014); Alili et al. (2013)
		and scavenge free	
		radicals in birds	

Prosopis africana oil	100-200 mg/kg	Increased red blood cell	Alagbe (2022); Burt (2004); Jamroz et al.
	feed	and heamoglobin count,	(2005).
		increased body weight	
		gain and nutrient	
		utilization	
Anogeissusleio carpus stem	10-50 mL/ lit of	Modulation of fatty acid	Alagbe et al. (2022)
bark	water	of thigh muscle	

CONCLUSIONS

Overall, residents in the municipality of Badiangan demonstrated high levels of financial literacy based on prevailing knowledge and behavior. High levels of financial knowledge lead to high levels of financial behavior. Improving people's financial literacy is equates to having improved financial knowledge and behavior. Financial literacy is to be taken seriously regardless of occupation and sex. The results of this study may aid policymakers and practitioners in formulating appropriate strategies to help people better understand the significance of financial literacy. The elevated monetary consciousness and informed decision making should be maintained through subsequent financial education to improve people's quality of life.

REFERENCES

- Adam, A. M. (2018). *Gender Disparity in Financial Literacy: Evidence from Homogeneous Group.* International Journal of Social Economics, 45(1), 18–28.
- Alegria, R., Espejo, A., Fuertes, A., Lopez, V., Magno, L., Nuñez, A., Ordoyo, J., & Sadava,
 S. (2019). *Learning difficulties and coping mechanism among senior high school students*. Cabatuan National Comprehensive Highschool.
- Bhushan, P., & Medury, Y. (2013). Financial literacy and its determinants. ResearchGate;
- Clarke, M., Heaton, M., Israelsen, C., & Eggett, D. (2005). *The acquisition of family financial roles and responsibilities*. Family and Consumer Sciences Research Journal, 33(4), 321–340. https://doi.org/10.1177/1077727x04274117
- Dew, J., & Xiao, J. J. (2011). *The financial management behavior scale: Development and validation.* Journal of Financial Counseling and Planning, 22(1), 43–59.
- Glass & Hopkins (2015). Educational Communication and Technology.
- Hastings, J., & Tejeda-Ashton, L. (2008). Financial Literacy, Information, and Demand Elasticity: Survey and Experimental Evidence from Mexico. NBER Working Paper n. 14538.
- LeBaron, A. B., Holmes, E. K., Jorgensen, B. L., & Bean, R. A. (2020). Parental Financial Education During Childhood and Financial Behaviors of Emerging Adults. Journal of Financial Counseling and Planning, JFCP-18-00021.
- Lusardi, A., & Tufano, P. (2015). *Debt literacy, financial experiences, and overindebtedness.* Journal of Pension Economics & Finance, 14(4), 332–368. DOI: https://doi.org/10.1017/S14747215000232

- Lusardi, A. (2019). Financial literacy and the need for financial education: evidence and implications. ResearchGate. 155. 1. 10.1186/s41937-019-0027-5.
- Mitchell, O. S., Lusardi, A., & Curto, V. (2009). Financial Literacy Among the Young: Evidence and Implications for Consumer Policy. SSRN Electronic Journal. vol. 44(2), pp. 358 - 380, 2010
- Peach, & Yuan. (2017). Assessing the Financial Knowledge, Behaviours, and Attitudes of Undergraduates. Journal of Business Education & Scholarship of Teaching, 11(2), 27–38
- Pedroso, J.E.P. (2020). Understanding Casa Mariquit as an Ilonggo Cultural Heritage Site: Towards the Development of a Video Documentary Instructional Material, BIMP-EAGA Journal of Sustainable Tourism Development, 9(1), 40-51. DOI: https://doi.org/10.51200/bimpeagajtsd.v9i1.3247
- Pedroso, J.E.P. (2021-a). Students' Views from Webinars: A Qualitative Study. International Journal of Arts and Humanities Studies (IJAHS), 1(1), 36-44. ISSN: 2754-4311, DOI: 10.32996/ijahs
- Pedroso, J.E.P., Oducado, R.M.F., Ocampo, A.R.S., Tan, V.S., & Tamdang, K.A. (2021-b). Factors Influencing Intention to Use Videoconferencing Tools in Online Distance Education. Australian Journal of Maritime & Ocean Affairs. DOI: 10.1080/18366503.2021.2014181
- Rai, K., Dua, S., & Yadav, M. (2019). Association of Financial Attitude, Financial Behaviour and Financial Knowledge Towards Financial Literacy: A Structural Equation Modeling Approach. FIIB Business Review, 8(1), 51–60.
- Rooij, V., Maarten, Lusardi, A., & Alessie, R. (2007). *Financial Literacy and Stock Market Participation*. NBER Working Paper n. 13565.
- Schubert, R. (1999). Financial Decision-Making: Are Women Really More Risk-Averse? American Economic Review, 89(2), 381–385.
- Stango, V., & Zinman, J. (2007). Fuzzy Math and Red Ink: When the Opportunity Cost of Consumption Is Not What It Seems. Mimeo, Dartmouth College.

Cite this article:

Lester B Magno, John Erwin P. Pedroso, "Financial Literacy: A Case Up Close of Community Residents", Journal of Multidimensional Research and Review (JMRR), Vol.3, Iss.2, pp.1-7, 2022